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I. INTRODUCTION

Two of the principal theories of edge diffraction are the geometrical

theory of diffraction (GTO) enunciated by Keller [1] - [3] and the physical

theory of diffraction (PTD) originated by Ufimtsev [4]. The GTD extends the

Geometrical Optics (GO) by the inclusion of rays diffracted by surface

singularities. Keller's theory fails in the vicinities of GO boundaries known

as transition regions. To overcome this difficulty, the uniform theory of

diffraction (UTD) [5], [6] and the uniform asymptotic theory (UAT) [7] - [9]

have been devised. A common failing of all ray optic techniques is that they

predict infinite fields at caustics. The method of equivalent currents (MEC)

alleviates the problem at caustics encountered by GTD and a number of authors

have made contributions towards this end [10] - [14]. This method is based

upon prescribing fictitious currents on the true surfaces.

In contrast to GTD, PTD is a technique based upon integrating the

currents induced on the scatterer. Uflmtsev postulates that the induced

current is a sum of uniform or physical optics (PO) current induced by the GO

surface field and the non-uniform current induced by the diffracted field at

the surface. The scattered field is obtained as a surface integral of these

currents. Thus, PTD is an extension of PO. It must be noted, however,

Ufimtsev does not give explicit expressions for the non-uniform currents, but

instead determines the field due to these currents from "indirect

consi derati ons".

Knott and Senior [15] present an elegant summation of the three

techniques, GTD, PTD and MEC. Lee [16] compared the UAT with PTD and points

out that the lack of explicit expressions for non-uniform currents or its

dominant contribution is a notable disadvantage of Ufimtsev's theory.

Schretter and Bolle [17] have attempted to find closed form approximations for
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., surface currents on a wedge for both TE and TM polarizations. Tneir

expressions suffer from significant discrepancies, however. A notaole

addition to the literature on edge diffraction is a recent review paper by

Deschamps C18].

In this paper, we present closed form expressions for non-uniform

currents on a wedge illuminated by a TE-plane wave. These expressions are

derived by requiring that they coincide with the current predicted by the

asymptotic diffraction theory far from the edge and, further, that they agree

with the current predicted by the eigenfunction solution at the edge. The

angle of incidence is arbitrary and our expressions remain valid even in those

cases where either one or both faces of the wedge is in the vicinity of a GO

boundary. Exact expressions for non-uniform currents are available for the

two special cases of a half plane and an infinite plane. For these special

cases, our expressions reduce to the exact solution. Extensive computations

have been made and our expressions are compared with non-uniform currents

computed from an elgenfunction solution of the wedge. Good agreement is

obtained throughout.

2



2. THEORY

In this section, we obtain expressions for surface currents induced on an

infinite wedge by a normally incident Transverse Electric (TE) plane wave.

Figure I shows the geometry of the problem. A cylindrical coordinate system

is used with the edge of wedge coinciding with the z-axis. Face A is defined

by the * = 0 plane and Face B is defined by the 0 = (2w-a) plane, where a is

the inferior wedge angle. It is convenient to define the numbers 'n'

and 'v' such that

r(2ir-a) a nir 1 .. 1 n 2 and 4 V 11

n 1 (v * 1) corresponds to an infinite plane and n = 2 (v = ) corresponds

to a half plane.

The magnetic field of the incident TE-plane wave is given by,

"""e-jop cos(o - 0i)
S0 e 0 z  (2)

Ho  is the amplitude of the plane wave, a is the propagation

constant, 0i is the angle of incidence as shown in Figure 1 and uz is the unit

vector in the z-direction. The unit tangential vectors tA and tB and the unit

normal vectors nA and n8 are shown in Figure 1. Also shown in Figure 1 are

the reflection boundary and the shadow boundary and the transition regions

associated with these boundaries.

V.
From the symmetry of the problem under consideration we need to consider

the angles of incidence in the range 0 4 41 nw only.

3



Figure 1. Geometry of a Wedge.
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2.1. Formulation

The current induced on either face of the wedge is considered to consist

of two components. Following the terminology of Ufiiitsev [4], these

components of the current are labeled the unifrom (physical optics) and non-

uniform currents (NUC). Thus,

u fnu (3)

The total field of a wedge may be decomposed into the Geometrical Optics

(GO) field and the diffracted field. The uniform and non-uniform currents may

be considered to be induced by the GO field and the diffracted field. Hence,

the uniform current is,

3u a 2n x A in the illuminated region

(4)

a 0 in the shadow region

The non-uniform current is not so easily obtained. However, far from the

edge, (ap >> 1), the diffracted magnetic field and hence the current may be

ootained using the asymptotic theory of diffraction [5], [6]. Hence,

nu d d so >> (5)

At the edge (p = 0), the eigenfunction solution may be used to obtain the

total magnetic field. From James [19], the total field is,

ATotal(P 0) = 2vH 0u (6)

5
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The non-uniform current is simply the difference between the total and uniform

currents and since the latter is known,

0nu 0) = 2vH0 (n xu) - u(P = 0) (7)

Thus, from Equations (5) and (7), the non-uniform current is obtained for

points well removed from the edge and at the edge. We now postulate that the

NUC may be expresed in the following fashion:

Inu = h(ap;oin) e'JB t (8)

where 'h' is a function yet to be determined and t is an appropriate unit

tangent vector. We require that for Sp >> 1, it must reduce to Equation (5)

and further, for OP = 0, it must reduce to Equation (7). Thus, the problem

consists in finding the function h(op;oi,n) in such a way that for Bp >> 1,

Equation (8) gives the same current as that predicted by the asymptotic theory

of diffraction and for oo = 0, it yields the same current as that dictated by

the eingenfunction solution.

Out of a wide class of possible functions, the choice for h(ap) may be

narrowed down to one class of functions by an examination of the physics of

the problem. As shown in Figure 1 and as pointed out by James C19], the edge

and its vicinity is always in the transition region associated with GO

boundaries. Thus, the function h(sp) acts as a connecting function between

points that are in and out of a transition region. In such a situation, a

Fresnel function or its variations represented the field variation as

demonstrated by both UTD [5] and UAT £7]. The Fresnel function appears in

6



Sommerfeld's solution for a half plane [20] and also Pauli's solution for tne

wedge [21]. The present case is no exception.

The particular function we use is the modified Fresnel function (MFF)

denoted by K.(x). As in [19] it is defined by,

K/1 J2 - 2

K(x) = e j dt (9)
X

The large and small argument approximations for MFF are:

K(x) 1 x...a (10)

,..K (x) X x (11)

and
1

K.(o) - g (12)

Note that the phase changae in MFF as x changes from zero to infinity

is - I radians. As will be shown later, the phase change of NUC other than
mT

that due to exp(-jap) is also the same.

Of special interest, for the purposes of this paper, is the MFF in the

form A K.(Ax) where A is a real, positive constant. The small and large

argument approximations for this function are,

A K.(Ax) A- Ax = 0 (13)

A K.(Ax)- Ax >> 1 (14)
-.- 2/Tj . x

VX

7
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Note that the asymptotic approximation is the same for A K_(Ax) and K~tx). w4e

will now derive the closed form expressions for non-uniform currents.



2.2 Only Face-A is Illuminated

When the angle of incidence is in the range 0 4 i 4(n-i) w only Face A

is illuminated. Hence, the total current on Face A consists of both the

uniform and non-uniform currents. Face B, being in the shadow region, has no

uniform current and the total current consists of the non-uniform current

only.

Current on Face B: The diffracted magnetic field at the edge, from the

eigenfunction solution is given by

H B 2v H a 0 (15)z,d z 0  =

PB is the distance from the edge along Face S. The diffracted magnetic field,

far from the edge, using Keller's Theory of diffraction as in [5] is given by

H B 2v H sin vw 6PB >> 1 (16)
z,d 0 cosVir + cosv 1pi

.4.' H B 4v H B8 0.. , p. =  (17)
z,d 07 80=0

whre4v Ho 20 XB-- e 8 B > 1 (18)
.. where 7-8

8=

FB  sin2 B B (19)

F8 - sinvit/(cosvw + cosvo1 )



Comparing Equations (17) and (18) with Equations (13) and (14) and noting tnat

FB and hence xB remain positive for 0 4 pi < (n-l)w, H d may be expressed inZ,d

terms of MFF as,

HB z4v Ho B 200 ) P (

z,d 0 (BXB) e(0

The non-uniform current is given by,

nB  4v H B K BX B .S(21)
nu 0 (Bx8 ) tB, 0

0 4 Oi 4 (n-1).r

By using Equations (10) and (12), we can easily verify that Equations (20) and

(21) agree with the asymptotic theory of diffraction for P, >> 1 and with the

eigenfunction solution at the edge. We expect that they constitute a close

approximation to the true values for intermediate values of pB and will so

demonstrate by numerical computation in Section 3.

Current on Face A: The diffracted magnetic field at the edge and far from tne

* edge is given by,

H A -2 H (1v)

z,d S = 0 (22)

- 2 H0 v FA  1 e ,P A >> 1 (23)

where

sinvw (24)
FA cosvy - cosv(p(

10
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4,.

Noting that FA remains negative for 0 4 ,i< n, Equations (22) and (23) may oe

cast in the form,

HA =- 2 H (A/2) aPA = 0 (25)
z,d JPA

-- 2 H0  A e •PA >> 1 (26)

where,

A = 2(1 - v)

- (27)

x 2-4
XA" SPA vIA

As before, comparing Equations (25) and (26) to Equations (13) and (14), the

diffracted magnetic field and the non-uniform current may be expresed in

closed form as,

H o 2 H A XA)e 0<PA( ;0 i < (28)
.4z,d 0 A A

,-" and = 2 H A K.(A XA) e tA' 0 < PA ( "; 0 i (29)

nAPA.

Again, we can readily verify that our closed form expressions agree with the

eigenfunction solution and the asymptotic theory of diffraction at the edge

and far from the edge.

Since Keller's theory has been used to obtain Equations (21) and (29),

they are valid only when neither Face A nor Face B is close to Geometrical

optic boundaries. For instance, when Oi - (n-1)), Face B is in the vicinity

of a shadow boundary and Equation 16 is not applicable, and neither is

Equation (21). Such cases, where either or both of the wedge faces are in the
5%°

4. %4
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proximity of a GO boundary are dealt with in Section 2.4. Next, we corsider

the case when both faces are illuminated.

2.3 Both Faces Illuminated
niT

We now consider the angles of incidence in the range (n-1)w < i

In this range, both faces are illuminated. The current on Face A is still

given by Equation (29). However, the current on Face B now consists of both

uniform and non-uniform components.

Current on Face B: As before, the diffracted magnetic field at and far from

the edge is given by,

HB - 2 H (-v) puB U 0 (30)z,d

L1

~2 Ho  FB  1 e• PB > > 1 (31)

where, a Fe(

sinvw (32)FB cosw + cosvj(

Note that FB is negative for (n-)w 4 i e. ni. Clearly, Equations (30) to

(32) are similar to Equations (22) to (24) and the closed form expressions for

the field and the current are,

NBJ*21B Kn(
HB. 2HBK.(B x • -jP 0 4 < 4w (n-l)w 4 i 4 nw (33)

z,d 0 XB)- (33)

and 3 B 2 H B K (B xB) e B 2 0 0 PB ; (n-l)r 4 (34)

nu K0 8  8  o.l~

where,

12



B s 2 (1 - v) (35)

B x (1/v IF8 I)

Now, it only remains to consider the cases where either or both of the faces

are in a transition region associated with GO boundaries.

2.4 Transition Region Currents

Face B of the wedge is in a transition region in the following two cases:

a) when oi is close to but less than (n-l)T, a shadow boundary is close

to Face B, and

b) when oi is close to but greater than (n-l)w, a reflection boundary is

close to Face B.

In a similar fashion, Face A of the wedge is close to a GO boundary

when 0i is close to w. Both faces of the wedge may be close to GO boundaries;

this condition occurs when n Is close to two. Then (n-1)r - i.

Hence, 0i ~ (n-l)r imples 41 - w.

All these cases are considered in this section. The procedure used is

essentialy the same as before. The only difference is that the diffracted

- field far from the edge Is obtained using Pathak and Kouyonmjian's uniform

theory of diffraction [5].

Current on Face B: The angles of incidence of interest are in the vicinity

of (n-1)w. Let,

13



-- (n-1)w ± 6 (36)

where 6 is a small positive quantity. The positive sign in Equation (36)

corresponds to the case of Face B being illuminated with a reflection boundary

being close by. The negative sign corresponds to the case when Face B is in

the shadow region with a shadow boundary being close by. From UTD, the

diffracted magnetic field far from the edge is given by,

B H 0  Tan *'F(x + ) + Tan *+ F(x')] e B PB >> 1 (37)
z ,d nv/ 2 vi ap ,

where, the transition function F(x) is given by [5],

F(x) 2jI VTI ejX e- .2

I~ itt-

*2 V- jx K_( 7-') (38)

and

10I =n

(39)

x±'= 28P, cos (-c)

The small and large argument approximations of the transition function are

given by,

F(x) -/ - 2jx x-0

(4U)

and F(x) - 1 X

14



The second term in the square barckets of Equation (37) is noteworthy. For

small '6'

Tan *+ = Tan (n+ -6 2n (41)
*n- -6

and x" - B (42)

Thus x is small and using the small argument approximation of F(x),

Tan#+ F(x-) ~ ; E n / 2wj1op B - j 2n 8pB6 ) (43)

Unlike x-, for Sp8 large, x remains large and F(x ) may be approximated by

unity and the diffracted field may be written as,

H OU ~ U 2  8 >> 1 (44)z,d l+u

where,

u = H1 1 e- j8  >> 1 (45)
1 0 n / 2uj8

,dp B

and u2 - sgn [tan*+] 2 Ho  86} e 'p >>  (46)

Keeping Equation (41) in mind, Equation (46) may be rewritten as,

sgn 2 1Z -1'/," ' 2n Icot*I e( 47)

..,',u 2 - ct +  
o {,-a nJCt+ PB >

e(47)

- :15
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At the edge, as before,

' HB : 2v Ho0 2 Ho0 at p = 0 if Face 8 is illuminated. (48)
; "z , d o "

- 2v H at p = 0 if Face B is shadowed. (49)0

4 Comparing the expression in curly brackets of Equation (47) with

Equation (11), it is easily recognized to be 2 H0 sgn (cot*+ )

K C /BPB/ 2 2n I cot *+ I I for apB >> I . For pB - 0, i.e. at the edge,

this function has a value of sgn (cotp+ ) F.  Keeping this in mind, the

diffracted field at the edge may be rewritten as,

u at p =0 (50)
z,d 1 2 a+ u2

where,

u, - (2v - 1) Ho  at p -0 (51)

and u2 = sgn (cot*+) H0 at p -0 (52)

Now, Equations (51) and (45) may be combined together as in the preceding

sections to yield,

"JOPB

u =2 Ho0 B K_[B x •e 0 4 PB 4 (53)

where,

8- (2v- 1)

(54)

and x-= 2n cot,"

16..



Equations (52) and (47) yield, as already determined,

a2 =2H O sgn(cot 
+ ) K(x+) e (55)

where

+ a/ii C 0+ii

x-,-- 2n I cot (56)

The current on Face B is now obtained to be,

2 H [B K(Bx _ s .(x)] e

nlu 0 ~~B g~~Bje tA

(57)

0 4 B

The analysis for current on Face A with i 7r remains essentially the

same. We give, without details,

u 2 H A K(AyA) - sgn(tang-) J.(yA) e" tA

(58)

0 PA -

where,

A - (2v- 1)

17
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We will now obtain a quantitative criterion as to when '6' may oe

considered small and, hence, use the expressions for transition region

currents. Equation (41) is obtained by replacing the tangent function Dy its

small argument approximation. Such an approximation may be taken to be valid

* for angles less than w/20. Hence,

6 et

and 6 (Tu (60)

Note that the "width" of the transition region depends upon the wedge angle.

Equation (57) is valid when (n-1)w - nU 4 y (n-l)w + T(T and Equation (58) is

valid when w- - 4 jiv + TU. For all other angles of incidence,

expressions derived in Sections 2.2 and 2.3 apply.

2.5 SPECIAL CASES

In the case of an infinite plane (n - 1) and a half plane (n = 2), exact

solutions for induced currents are available in the literature [19]. We now

pshow the expressions derived in this paper reduce to these exact solutions.

a. Infinite Plane: In the case of an infinite plane, both faces are always

illuminated and Equations (29) and (34) are applicable. Clearly, both these

'4

non-uniform currents reduce to zero as they should. The total current on the

infinite plane is simply the uniform current.

A more interesting case is when *i is zero and n is close to but slightly

greater than unity. Then, Face B is in the shadow region and is close to a

shadow boundary. Hence, Equation (57) is applicable. As n approaches unity,
-I1

18



" the wedge approaches an infinite plane and the shadow-side current must

approach the uniform current. From Equations (54) and (56), B - 1, x5 0

and t B - tA as n 1 1. Therefore, Equation (57) simplifies to

nu 2 e tA as n + 1 (61)

This is simply the PO current and we obtain the exact solution. The non-

uniform current on Face A, given by Equation (29) becomes zero, and the total

current is simply the uniform current.

b. Half-Plane: The total non-uniform current on Face A is a sum of the non-

uniform currents on Face A and Face B given by Equations (21) and (29).

Noting that, for this case, t8 - tAs

- - "J4A TA

nu x 2 H o C 2v B K_(BXB) + A K_(AA) Je tAA n 2 (62)

For n 2, Equations (19) and (27) reduce to,

B= 1= A

01
A  UP cos - "x

and PA PB =
p

Using the definition of the modified Fresnel function (Equation 9),

2 02
~~jo =-H /e (2cos 71) 2

ft it

enu o "e dt t (63)

/20p cos -7I

19
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Noting that the uniform current on the half plane is given by,

jap c0s41
2 2H0 e tA

Equation (63) becomes,

- j2

nfu - 2 1u if f (P e~ dt (64)
Up I cosZ

This is exactly the expression obtained by James [19] for what he calls the

correction current.

20



3. NUMERICAL ILLUSTRATIONS

The currents induced on a wedge are computed using the expressions

derived in this paper. These results are compared to the exact currents

obtained using the elgenfunction solution to test their accuracy.

We consider three separate wedge angles corresponding to

w i/12, wr/2, and 27r/3. The case a w i/12 is chosen because for this case

both the faces of the wedge could be in transition regions associated with GO

boundaries. The cases a = w/2 and 2w/3 are chosen because Shretter and

Bolle's [17] curves correspond to these wedge angles. For each wedge angle,

computations have been carried out for a range of angles of incidence.

We follow a uniform notation for presenting our results. The exact

currents obtained from the elgenfunction solution are denoted by a dashed line

(Face A) or solid line (Face B). Currents computed using the expressions

derived i n this paper are denoted by symbols only, triangles ( A

for transition region currents and crosses (x x x) otherwise.

Illustration 1: a - 150

We consider four angles of incidence, *i 0= 1 350, 1660 and 172.5'.

The first two angles of incidence correspond to only Face A being illuminated

and the last two correspond to the case where both faces are illuminated.

Figure 2 shows the currents for the case of i= 00. Note that neither

of the faces is in the vicinity of a GO boundary. Figure 3 corresponds

to O= 1350. Note that a shadow boundary is now in the vicinity of Face 8,

but Face A is not affected by any GO boundary. Figure 4 shows the currents

-. for 0 1660. For this case, both the faces are affected by a reflection

boundary. Figure 5 corresponds to (0 172.50 and in this case both faces are

visible. Furthermore, from symmetry the magnitude of current on both the
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faces is the same. In Figure 6, we present the phases of non-uniform current

when =1660. For the sake of conserving space, we present only one pnaseIplot but note that the agreement shown here is typical. In allI of tnese

cases, agreement between our expressions and the exact results is excellent.

Illustration 2: a - 900

We consider four angles of incidence corresponding to

00, 22.50, 90.010 and 1350. Note that Schretter and Bolle C171 have

presented curves corresponding to 0i x 0 and 22.50.

Figure 7 anti 8 show the currents corresponding to the case =00

and 22.50. Only Face A is illuminated for these cases and currents on neither

*face is affected by GO boundaries. Figure 9 corresponds to the case

of *90.010 .In this case, the reflection boundary is very close to Face

B. Figure 10 corresponds to the case of 0i 1350 . In view of symmetry,

currents on both faces are identical. In Figure 11, we show the phases of

total currents on both the faces and note that the degree of agreement Shown

is typical. It may be pointed out that the agreement between our results and

the exact results remains good but not as good as the agreement was for the

case of oi 150.

Illustration 3: a - 1200

This case has been discussed by Schretter and Bolle £17] and we consider

* the same angles of incidence, viz., *~=150, 900 and 1200 In addition, we

also consider the case for =550, to illustrate the behavior of the

transition region currents.

Figures 12 and 13 correspond to the cases 0 = 150 and 550 and in these

cases only Face A is illuminated. In the latter case, a shadow boundary is

26
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close to Face B. Figures 14 and 15 correspond to Oi 900 and 1200. These

angles of incidence are such that both faces are illuminated and further, in

the latter case, the currents on both faces are identical.
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4. DISCUSSION AND CONCLUDI NG REMARKS

In this paper we present closed form expressions for non-uniform currents

on a perfectly conducting wedge illuminated by a TE-plane wave. These

expressions are valid for all wedge angles and any given angle of incidence,

but are not uniform. The expressions derived in this paper involve the simple

and well-known modified Fresnel functions. These expressions are such that

-~ far from the edge, they agree with the asymptotic theory of diffraction and at

the edge, they agree with the elgenfunction solution. Furthermore, as

demonstrated by numerical illustrations, for intermediate distances from the

edge, our expressions agree quite well with the exact solution. Exact closed

form solutions are available in the literature for the cases of a half plane

*and an infinite plane. Our solution reduces to these exact expressions for

those special cases.

It is often suggested that the non-uniform currents are significant only

in the immediate vicinity of the edge [17). This is true only when the wedge

faces are not in the vicinity of a GO boundary. As demonstrated by the

illustrations in the preceding section (Figures 4, 9 and 13, for instance),

transition region currents remain significant far from the edge.

There are several advantages in having closed form expressions for non-

uniform currents. As pointed out by Schretter and Bolle [17], it becomes

2 possible to take the Fourier transform of the current and, consequently,

simplifies problems involving pulse scattering from edged bodies. Recently,

these expressions have been incorporated into an iterative scheme for solving

the magnetic field integral equation with a considerable success [22). It is

* 3lso possible to use these expressions to obtain the fields in a caustc

region as an integral of surface currents, similar to the technique of MEC.
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It would be interesting to obtain expressions for currents that are

uniformly valid. Also, the case of excitation of a wedge by a TM plane wave

needs to be considered. These problems are presently under investigation and

the results would be communicated in due course.
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